


MACs and Signatures

@ Both are used to assert that a message has indeed been
generated by a party

@ MAC is the private-key version and Signatures are public-key
version

o Note: Message hiding is not part of the (intuitive) security
requirements
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Message Authentication Codes

o Defined by (Gen, Tag, Ver) algorithms

@ The signer and the verifier meet to generate a secret key
sk ~ Gen(1")

@ The signer sends a message m € {0,1}" along with a tag
T ~ Tagg (m) (Note that the tag generation algorithm can be
randomized)

@ The verifier, upon receiving (m, T) verifies using
Versk(fﬁa 5:) € {07 1}
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Correctness and Security

e Correctness: For any message m € {0,1}",
Pr[sk ~ Gen(1"): Verg(m, Tagy(m)) =1] =1
@ Security: For any adversary A the following holds

ATees() = (| 77) A
~ ny. ’ <
Pr sk ~ Gen(1"): m € Q A Verg(m'.r)=1| S negl(n),

where Q is the set of all queries made to the tagging oracle
Tagg(-) by the adversary A

e Note: If the security is restricted to |Q| = k, then it is called a
k-time secure MAC
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1-time MAC

e Computational assumptions are not necessary for MACs
@ Consider the following construction of 1-time MAC

o Gen(1") samples r(&) & {0, 11% where b € {0,1} and i € [n],
and outputs:

N B IO
=0 ;02 ... ) e
o Tag, (m) outputs

7 = M) p(m22) o (mn,n)
o Verg(m,T) outputs 1 if and only if all the following tests pass:
m,

r(mii) — 7
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Proof of Security

Suppose an adversary A queries the tagging oracle at m(1) and
gets outputs (1)

Then it outputs (m’,7'), where m’ # m()

If m" # m(1) then there exists i such that m’ # mfl)

So, the probability that (m’, 7’) is a valid signature is at most
the probability of guessing r(m'/""), which is at most 27X

So, for k = w(log n) this is a secure 1-time MAC scheme
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(poly-time) MAC using One-way Functions

@ We will construct it using Pseudo-Random Functions (PRFs)
and we already know that PRFs can be constructed from

OWFs
© Suppose {fi,..., fy(n)} is a PRF family
@ Consider the following scheme:
o Gen(1") samples sk < {1,..., K(n)}

° Tagsk(m) = sk(m)
o Verg(m,7) =1 if and only if fy(m) =7

@ Use the intuition to prove its security:

e PRF family is computationally indistinguishable from the
family of random functions

o Given evaluation of a random function at some points Q, it is
impossible to predict the output of the function at m’ # Q
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Digital Signatures

@ Defined by (Gen, Sign, Ver) algorithms

o Correctness:
Pr[(sk, pk) ~ Gen(1"): Verp(m, Signg (m)) =1] =1
@ Security:

) ASIgnsk()(pk) = (m/’ 0'/) A

<
m & Q A Very(m',o')=1] ~ negl(n)

Pr | (sk, pk) ~ Gen(1")

Lecture 18: Message Authentication Codes & Digital Sign:



1-time Digital Signatures using OWF: Lamport Scheme

o Let f: {0,1}" — {0,1}" be a OWF

o Gen(1") samples r(b:) & £0,1}" for b € {0,1} and
i€{1,...,n} and computes y(®) = f(r(5:)) Output

k o r(071). .. r(07’)- .. r(07n)
K=\ ,an. . @, 1)

o (YO y 0Dy O
PE= .y, .y (n)

@ Encg(m) outputs o = p(m1) - p(mnin)

o Verp(m, o) outputs 1 if and only if all the following tests pass

y(misd) — (o), where
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Security Proof

@ Suppose A* breaks the Lamport Scheme with probability ¢

@ Following is the code of A on input y:

Prepare sk and pk of Lamport Scheme
Pick random i* ¢ [n] and b* Ll {0,1}
Replace y(i*’b*) by y in the public-key pk
Send pk to A*
Receive m from A*
If b* = mj=, then stop executing A* and return 0 to the external
honest challenger of OWF experiment (this corresponds to the case
where we need to know an inverse of y to prepare the signature of
m

)

o Otherwise, generate the signature o on m using the secret key sk

Obtain (m', ¢’) from A*

e If (m',0") is not a valid message and signature pair, then return 0 to

the external honest challenger of OWF experiment (this corresponds
to the case that the adversary A" failed to produce a forgery)
Otherwise, if b* = m/., i.e. A* has helped us invert y (think why
this is the case), then return o} (This is the inverse of y)
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Security Proof

Note that we succeed if we satisfy the following conditions:
e b* = ml. but b* # m;-
e A* successfully breaks the signature scheme.

Conditioned on A* successfully breaking the signature scheme, the
probability that random (i*, b*) satisfy the first condition is 1/2n.
So, overall probability of successfully inverting the OWF £ is /2n
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General Signatures

Think & Read about the following:

@ Signing Arbitrary length messages: Use CRHF family that
hash arbitrary length messages (Merkle-Damgérd
Construction) and the “Hash-then-sign” Paradigm

@ Signatures where an adversary can ask for arbitrary-polynomial
number of signatures of messages of its choice

Lecture 18: Message Authentication Codes & Digital Sign:



