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MACs and Signatures

Both are used to assert that a message has indeed been
generated by a party
MAC is the private-key version and Signatures are public-key
version
Note: Message hiding is not part of the (intuitive) security
requirements
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Message Authentication Codes

Defined by (Gen,Tag,Ver) algorithms
The signer and the verifier meet to generate a secret key
sk ∼ Gen(1n)
The signer sends a message m ∈ {0, 1}n along with a tag
τ ∼ Tagsk(m) (Note that the tag generation algorithm can be
randomized)
The verifier, upon receiving (m̃, τ̃) verifies using
Versk(m̃, τ̃) ∈ {0, 1}
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Correctness and Security

Correctness: For any message m ∈ {0, 1}n,

Pr[sk ∼ Gen(1n) : Versk(m,Tagsk(m)) = 1] = 1

Security: For any adversary A the following holds

Pr
[
sk ∼ Gen(1n) : ATagsk(·) = (m′, τ ′) ∧

m′ 6∈ Q ∧ Versk(m′, τ ′) = 1

]
6 negl(n),

where Q is the set of all queries made to the tagging oracle
Tagsk(·) by the adversary A
Note: If the security is restricted to |Q| = k , then it is called a
k-time secure MAC
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1-time MAC

Computational assumptions are not necessary for MACs
Consider the following construction of 1-time MAC

Gen(1n) samples r (b,i)
$←{0, 1}k , where b ∈ {0, 1} and i ∈ [n],

and outputs:

sk =

(
r (0,1) r (0,2) · · · r (0,i) · · · r (0,n)

r (1,1) r (1,2) · · · r (1,i) · · · r (1,n)

)
Tagsk(m) outputs

τ = r (m1,1)r (m2,2) . . . r (mn,n)

Versk(m̃, τ̃) outputs 1 if and only if all the following tests pass:

r (m̃i ,i) = τ̃i
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Proof of Security

Suppose an adversary A queries the tagging oracle at m(1) and
gets outputs τ (1)

Then it outputs (m′, τ ′), where m′ 6= m(1)

If m′ 6= m(1) then there exists i such that m′i 6= m
(1)
i

So, the probability that (m′, τ ′) is a valid signature is at most
the probability of guessing r(m

′
i ,i), which is at most 2−k

So, for k = ω(log n) this is a secure 1-time MAC scheme
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(poly-time) MAC using One-way Functions

We will construct it using Pseudo-Random Functions (PRFs)
and we already know that PRFs can be constructed from
OWFs
Suppose {f1, . . . , fk(n)} is a PRF family
Consider the following scheme:

Gen(1n) samples sk $←{1, . . . ,K (n)}
Tagsk(m) = fsk(m)
Versk(m̃, τ̃) = 1 if and only if fsk(m̃) = τ̃

Use the intuition to prove its security:
PRF family is computationally indistinguishable from the
family of random functions
Given evaluation of a random function at some points Q, it is
impossible to predict the output of the function at m′ 6= Q
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Digital Signatures

Defined by (Gen, Sign,Ver) algorithms
Correctness:

Pr[(sk, pk) ∼ Gen(1n) : Verpk(m, Signsk(m)) = 1] = 1

Security:

Pr
[
(sk, pk) ∼ Gen(1n) : A

Signsk(·)(pk) = (m′, σ′) ∧
m′ 6∈ Q ∧ Verpk(m

′, σ′) = 1

]
6 negl(n)
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1-time Digital Signatures using OWF: Lamport Scheme

Let f : {0, 1}n → {0, 1}n be a OWF

Gen(1n) samples r (b,i) $←{0, 1}n, for b ∈ {0, 1} and
i ∈ {1, . . . , n} and computes y (b,i) = f (r (b,i)). Output

sk =

(
r (0,1)· · · r (0,i)· · · r (0,n)
r (1,1)· · · r (1,i)· · · r (1,n)

)
pk =

(
y (0,1)· · · y (0,i)· · · y (0,n)
y (1,1)· · · y (1,i)· · · y (1,n)

)

Encsk(m) outputs σ = r (m1,1) . . . r (mn,n)

Verpk(m̃, σ̃) outputs 1 if and only if all the following tests pass

y (m̃i ,i) = f (σ̃i ),where
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Security Proof

Suppose A∗ breaks the Lamport Scheme with probability ε

Following is the code of Ã on input y :
Prepare sk and pk of Lamport Scheme
Pick random i∗

$← [n] and b∗
$←{0, 1}

Replace y(i
∗,b∗) by y in the public-key pk

Send pk to A∗
Receive m from A∗
If b∗ = mi∗ , then stop executing A∗ and return 0 to the external
honest challenger of OWF experiment (this corresponds to the case
where we need to know an inverse of y to prepare the signature of
m)
Otherwise, generate the signature σ on m using the secret key sk
Obtain (m′, σ′) from A∗
If (m′, σ′) is not a valid message and signature pair, then return 0 to
the external honest challenger of OWF experiment (this corresponds
to the case that the adversary A∗ failed to produce a forgery)
Otherwise, if b∗ = m′i∗ , i.e. A∗ has helped us invert y (think why
this is the case), then return σ′i∗ (This is the inverse of y)
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Security Proof

Note that we succeed if we satisfy the following conditions:
b∗ = m′i∗ but b

∗ 6= mi∗

A∗ successfully breaks the signature scheme.
Conditioned on A∗ successfully breaking the signature scheme, the
probability that random (i∗, b∗) satisfy the first condition is 1/2n.
So, overall probability of successfully inverting the OWF f is ε/2n
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General Signatures

Think & Read about the following:
Signing Arbitrary length messages: Use CRHF family that
hash arbitrary length messages (Merkle-Damgård
Construction) and the “Hash-then-sign” Paradigm
Signatures where an adversary can ask for arbitrary-polynomial
number of signatures of messages of its choice
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